

OPALE : Organisations Paysagères et quAlité de l'Eau

Dominique TREVISAN (INRA Carrtel) Patrick TAILLANDIER (INRA Miat) Benoît SARRAZIN (ISARA Lyon) Claude JANIN (UJF Pacte)

2019.

PLAN
Installation
1. Installation et Configuration de Gama
2- Installation de Matlab runtime
3. OPALE.exe
A. Installation.
B. Interface OPALE
B1- Présentation Générale
B2- OPALE pas à pas
B2-1. La list-box système
B2-1. Nouveau Projet

Installation

Les étapes suivantes permettent d'installer deux suites logicielles nécessaires aux calculs (sous Windows). Il s'agit de l'environnement de calcul Gama, dédié aux interactions multiagents et Matlab pour le traitement de données matricielles.

1. Installation et configuration de Gama

- Télécharger gama ici : <u>https://gama-platform.github.io/download</u> Cliquer sur « WITH JDK ».

- Décompresser le dossier GAMA_1.8_Windows_with_JDK.zip. ". Enregistrez le sur un emplacement de votre disque dur et notez l'adresse :

exemple : "C:\Users\admin\GAMA_1.8_Windows_with_JDK".

- Ouvrir ce fichier et lancer Gama.exe.

- Choisir un emplacement pour l'espace de travail et notez son adresse: exemple : C:\Users\admin\gama_workspace (fig. 1)

GAMA Models Workspace	×
Choose a Workspace to store your models, settings, etc.	
Your workspace is where settings and files of your Gama models will be stored.	
GAMA Workspace C:\Users\admin\gama_workspace	owse
Cione existing workspace OK Cance	

Fig. 1. Création de Gama Workspace

- Créer un projet nommé OPALE (majuscules requises, respectez scrupuleusement l'orthographe, pas d'autres caractères que O,P,A,L,E, sinon cela plantera !) : Clic droit sur User models , New ; Gama Project... (fig. 2).

Test models ((8 pro	ojects, no	ot yet ru	n)			
User models	(+	New	>	\Box	Gama Project		
		Import	>		Model file		
		Сору	Ctrl+C		Experiment file		
		Paste	Ctrl+V		Test experiment file		
	X	Delete	Delete	(+)	Other	Ctrl+N	

Fig.2 Création du Projet OPALE(1)

- Décochez la case Create a new model file, cliquez sur Finish, Quitter Gama. (fig.3)

	_	- 🗆	×		
New GAMA Project					1
Create a new GAMA Project.					
				N	
Project name: OPALE	al filo				
	erne				
				-	
(?)	Finish	Ci	incel		

Fig.3. Création du Projet OPALE(2)

2- Installation de Matlab runtime

Télécharger le module Matlab runtime ici : https://fr.mathworks.com/products/compiler/matlab-runtime.html (fig.4).

Release (MATLAB Runtime Version#)	Windows
R2019b (9.7)	64-bit
R2019a (9.6)	64-bit
R2018b (9.5)	64-bit
R2018a (9.4)	64-bit
R2017b (9.3)	64-bit

Fig.4. Téléchargement du Matlab Runtime

Choisir la version Windows R2018b (9.5) 64-bits.

Installez MCR_R2018b_win64_installer.exe. Ce module permet l'interprétation des codes matlab pour l'exécution d'OPALE.exe. La décompression des bibliothèques et leur installation est assez longue...

3. OPALE.exe A. Installation.

Décompressez les fichiers OPALE.zip dans un emplacement de votre choix. Notez l'adresse :

Exemple : "C:\Users\admin\Desktop\OPALE"

Dans ce dossier, outre OPALE.exe, figurent un ensemble de dossiers permettant de connecter deux espaces de calculs : Gama et un ensemble de codes Hydline (matlab), transparents pour l'utilisateur.

Dans le dossier GamaFiles figurent des données des trois territoires étudiés dans le PSDR TIP TOP : Miribel (Production de Céréales et Maraîchage), Vercors (Production laitière) et Aiguebelette (Polyculture Elevage). Ces dossiers contiennent des shapes files, des fichiers raster et des données sous format texte.

Dans le dossier GamaModels, figurent quatre modèles gama (format .gaml). Ne pas modifier ces fichiers.

Dans geo-manips, i a été rassemblé un ensemble d'exécutables et dll pour le traitement de données cartographiques (bibliothèques de calcul SAGA). Ne pas modifier ces fichiers. Enfin dans includes, se trouve un ensemble fichiers relatifs nécessaires au fonctionnement des modèles Gama. Ne pas modifier ces fichiers.

B. Interface OPALE B1- Présentation Générale

L'interface OPALE comporte un diagramme central (WorkFlow) et des boutons pour lancer et configurer différentes étapes de calcul (Fig. 5).

Fig.5 Interface OPALE

Le workflow donne la succession des étapes de calculs nécessaires aux diagnostics. Les boutons « Nouveau projet », « G>=H », « Contextuelle », « Automatique », « Climat-Systèmes-Pratiques », « Interfaces » et « H>=G » sont interdépendants. Is émulent ou masquent les champs de saisie ou les cases à cocher situés dans les panneaux latéraux Paysage=> Eau, Systèmes agricoles =>Paysage et Paysage => Agro-ressources. Lorsque les cases à cocher ou les champs de saisie disponibles ont été sélectionné ou renseignés, on lance les calculs par un clic sur Exec, avec la possibilité de les mettre en pause ou les arrêter. Plusieurs types de calculs sont lancés par cet interface, avec des programmes relatifs : - à la fabrication du paysage agricole, en lien avec le fonctionnement agricole, opéré dans l'environnement Gama (modèles Gama I et Gama F des étapes 1 et 2 du workflow) ; - au paramétrage des bassins versant et des calculs portant sur les flux d'eau, sous Matlab avec le modèle Hydline (étapes 3);

- au transfert de solutés ou de matières en suspension, sous Gama, avec le modèle Gama T ;
- à la reconfiguration des infrastructures vertes du paysage (haies, bandes enherbées, surfaces boisées), opérée via des bibliothèques SAGA de calcul spatialisé lancées depuis l'environnement Matlab ;

- et à l'échange de données entre les deux espaces de calculs (Gama Workspace et Hydline Workspace), via les modèles G=>H et H=>G.

B2- OPALE pas à pas B2-1 . La list-box système : (fig.6)

Fig.6 List box système

Elle est toujours active, quelle que soit l'étape de calcul. Elle détermine le type d'informations que Gama I, Gama F et Gama T doivent traiter, ainsi que les successions des étapes de calcul. Deux choix de systèmes de production agricoles sont proposés : d'une part les situations de territoire présentant des Systèmes d'élevage (laitier ou allaitant) et de polyculture –élevage (avec des cultures annuelles fourragères ou de vente) ; d'autre part les situations de grande culture pure (avec des systèmes céréaliers ou maraîchers). Les cas intermédiaires mixtes (systèmes sans élevage + systèmes élevage) ne sont pas traités dans la version actuelle. Le workflow varie selon l'option sélectionnée, avec dans le cas de l'élevage la nécessité de reconfigurer le parcellaire via Gama F lorsque des modifications portent sur les systèmes de production ou des conditions climatiques (fig.7):

Fig.7. Workflow sous Elevage/Polyculture-Elevage

B2-1. Nouveau Projet

Le programme « Nouveau Projet » (étape 1 du Workflow) a pour objet :

- la gestion des données d'entrée des programmes pour les traitements Gama I et Gama F. ;
- une paramétrisation préliminaire du bassin versant avec une évaluation des surfaces hors bassin topographique susceptibles de contribuer aux écoulements ;

-la gestion du stock de neige, avec la détermination de coefficients relatifs aux séquences de gel-dégel. Cette dernière n'est pas automatique et l'utilisateur est invité à l'émuler via une sélection ad hoc des cases à cocher correspondantes (fig. 8).

Fig. 8. Options pour le paramétrage du manteau neigeux

Le lancement du programme « Nouveau Projet » est opéré par un clic sur le bouton Exec. Il s'ouvre une boîte de dialogue demandant de sélectionner un fichier input.txt (fig.9).

承 Select input data file			×
← → → ↑ 🔒 > Ce PC > Bureau > hydline > w	orkspa	ace v Ö	Rechercher dans : workspace 🛛 🔎
Organiser 🔻 Nouveau dossier			EE 🕶 🔟 😮
Accès spride	^	Nom	Modifié le
		gui	09/12/2019 22:58
S (C:)	×	Temp	26/12/2019 15:25
Eureau Bureau	*	Trajectories	06/12/2019 12:16
📙 admin	*	input_data_miribel.txt	10/12/2019 14:07
		input_data_vercors.txt	10/12/2019 11:30
	_	log.txt	09/12/2019 23:02
📃 Ce PC		i origine.txt	09/12/2019 22:26
E Bibliothèques		source.txt	09/12/2019 22:23
		<	>
Nom du fichier : input data vercors.t	ct		(*.txt) ~
			Ouvrir Annuler

Figure 9. Sélection du fichier « input.txt ».

B2-1.1 Le fichier input.txt

Il rassemble les chemins des différents fichiers et répertoires nécessaires à l'exécution des programmes OPALE.

Il incombe à l'utilisateur de l'éditer préalablement au lancement d'OPALE.exe (avec Bloc Note ou tout éditeur de texte adhoc, comme Notepad par exemple) et de l'enregistrer dans un emplacement de son choix, fig.10.

🖹 C:\l	Jsers\admin\Desktop\hydline\workspace\input_data_miribel.txt - Notepad++					
Fichier	Édition Recherche Affichage Encodage Langage Paramètres Outils Macro Exécution Modules d'extension Doc					
🕞 📥	= 🖻 😼 🖓 🚔 🔏 🍈 b Ə 🗲 🏙 🏂 🔍 👒 🖫 🚰 == 1 🎼 🐷 S 🖅 🗎 💌					
🔚 input_	data_miribel.txt 🛛 🔚 input_data_vercors.txt 🗵 🔚 readmaps_and_data.m 🗵 🔚 mnt_vercors.asc 🗵 🔚 origine.txt 🗵 🔚 source.txt 🗵					
1	C:\Users\admin\GAMA_1.8_Windows_with_JDK					
2	C:\Users\admin\gama_workspace					
3	C:\Users\admin\OPALE\GamaFiles\Miribel\mnt					
4	C:\Users\admin\OPALE\GamaFiles\Miribel\bois\Couverts Ligneux.shp					
5	C:\Users\admin\OPALE\GamaFiles\Miribel\rpg\RPG2016_Miribe_idexploit_complet.shp					
6	8					
7	C:\Users\admin\OPALE\GamaFiles\Miribel\routes\roads.shp					
8	C:\Users\admin\OPALE\GamaFiles\Miribel\limite_bv\lim_bv.shp					
9	C:\Users\admin\OPALE\GamaFiles\Miribel\landuse\CLC-MIRIBEL.shp					
10	C:\Users\admin\OPALE\GamaFiles\Miribel\riviere\Fos.shp					
11	C:\Users\admin\OPALE\GamaFiles\Miribel\sol\sols_miribel.shp					
12	C:\Users\admin\OPALE\GamaFiles\Miribel\met_miribel_2016.txt					
13	C:\Users\admin\OPALE\GamaFiles\Miribel\debit_miribel_2016.txt					
14	C:\Users\admin\OPALE\GamaFiles\Miribel\carac_sols.txt					
15	MIRIBEL					
16						
17						

Fig. 10. Exemple de fichier input.txt (cas des systèmes céréaliers-grande culture).

Il faut renseigner 15 lignes, en respectant scrupuleusement leur succession. A titre d'exemple si OPALE.exe a été installé dans C:\Users\admin\Desktop\OPALE, pour utiliser les données Miribel fournies avec l'installateur, le fichier input.txt doit être modifié de la façon suivante : 1- Emplacement GAMA_1.8_Windows_with_JDK :

C:\Users\admin\GAMA_1.8_Windows_with_JDK

2- Emplacement du Gama Workspace : C:\Users\admin\gama_workspace

3- C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\mnt

4- C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\bois\Couverts Ligneux.shp

5-

 $\label{eq:c:Users(admin(Desktop(OPALE)GamaFiles(Miribe(RPG2016_Miribe_idexploit_complet.shp))} et.shp$

6- %

- 7- C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\routes\roads.shp
- 8- C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\limite_bv\lim_bv.shp
- 9- C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\landuse\CLC-MIRIBEL.shp
- 10- C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\riviere\Fos.shp

11- C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\sol\sols_miribel.shp

- 12- C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\met_miribel_2016.txt
- 13: C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\debit_miribel_2016.txt
- 14: C:\Users\admin\Desktop\OPALE\GamaFiles\Miribel\carac_sols.txt
- 15 : nom du territoire étudié (optionnel)

Le détail de ces fichiers est donné en annexe A

Lorsque « Nouveau Projet » a fini son exécution, l'interface donne les informations suivantes (fig. 11) :

- le résultat du calage du modèle fonte de neige (figure centrale, trait rouge confronté aux débits de l'exutoire, trait bleu) si ce paramétrage a été sélectionné (cf fig. 8). Dans l'exemple donné ci-dessous (fig. 11), on voit qu'il y a intérêt à conserver ce paramétrage, car la base des débits observés s'appuie bien sur les flux de fonte. Si tel n'était pas le cas (flux de fonte peu variable sans correspondance avec la base de l'écoulement observé, il y a intérêt à relancer « Nouveau Projet » en n'appliquant pas de traitement manteau neigeux (case à cocher = non, fig. 8).

- le résultat relatif à la surface de by non topographique, indiqué en m² dans le champ de saisie grisé BV non topo du panneau Paysage => eau. Si la valeur de la surface non topo est faible (< à 5% de la surface du bassin), il n'y a pas lieu de retenir une surface supplémentaire pour le calcul des bilans hydriques. Dans ce cas on remettra manuellement la valeur du champ BV non topo à zéro, lorsque celui-ci sera émulé (cf plus loin Optimisation contextuelle ou automatique).

- un message requérant les lancement successifs de Gama_I et Gama_F.

En cliquant sur OK, on ouvre automatiquement Gama.exe, si celui-ci n'est pas déjà ouvert. A ce stade, on peut poursuivre avec Gama I, puis Gama_F ou relancer « Nouveau Projet » pour tester un paramétrage du manteau neigeux.

Figure 11. Fin d'exécution de « Nouveau projet »

B2-2. Gama I

A l'invite, cliquer Ok sur le workspace proposé (figure 12).

Figure 12. Lancement automatique de Gama.

L'orsque l'interface gama est ouverte il faut déployer l'arborescence OPALE à partir de « User Model », puis models et double cliquer sur gama_I.gaml (figure 13). Cela charge le programme dans l'éditeur.

Figure 13. Sélection de gama_I.gaml

Il faut ensuite cliquer sur l'onglet qui correspond aux systèmes de production étudié (petits triangle blancs sur fond verts), figure 14. Ne pas modifier le texte de l'éditeur.

Figure 14. Editeur Gama_I.

Une série de messages apparaissent sur fond orange, dans la partie supérieure gauche de la fenêtre. Le programme se déroule normalement lorsque l'affichage donne « Instantiating agents ». Patientez quelques minutes.

Si une invite est déployée, donner un type pour les sièges d'exploitation non encore référencés (figure 15). Un choix standard est proposé. Cliquer sur OK pour continuer.

Lorsque le programme affiche « Experiment ready », cliquer comme indiqué dans la console sur Close experiment et lancer Gama_F. (Déployer OPALE/models et double cliquez sur gama_F.gaml. (figure 16).

ege26	Lait herbe enrubannage
ege27	Lait herbe enrubannage
ege28	Lait herbe enrubannage
ege29	Lait herbe enrubannage
ege30	Lait herbe enrubannage

Figure 15. Gama_I. Invite de complément d'informations

Figure 16. Fin d'exécution de Gama_I.

B2-3. Gama F

Il faut cliquer (triangle vert) sur l'un des deux modèles proposés.

Figure 17. Invite Gama_F.

Les deux modèles proposés n'ont pas le même tableau de bord. Dans le cas de Gama_F_ElevagePolycultureElevage, il comporte les boutons de réglage donnés figure 18.

B2-3.1. Gama F Elevage PolyCultureElevage

C Gama_F_ElevagePolycultureElevage - C:\Users\admin\gama_workspace\OPALE\models\gama_F.gaml	
File Edit Search Views Help	
Opening file meteo.txt [98%]	
茾 Model exploitationagri / Experiment Gama_F_ElevagePolycultureElevage 🛛 🖿 Models	
	٠
General	
Enregistrement des donnees pour le modèle hydro True	
Date de début de la simulation vendredi 1 janvier 2016	
Date de fin de la simulation samedi 31 décembre 2016	
Date de début de l'enregistrement vendredi 1 janvier 2016	
export_foret_prop True	
	(\mathbb{N})
proportions systèmes actuels climat actuel	^

Figure 18. Tableau de bord Gama_F Elevage Polyculture Elevage

Dans la console (en bas à gauche), il est récapitulé le paramétrage du calcul des occupations de sol (proportions des différents systèmes, type de climat). Après initialisation, ce sont les proportions et le climat actuel qui sont modélisés. Pour modifier ces conditions, voir ci après « § Climat – Systèmes –Pratiques).

Le Bouton « Enregistrement des données pour le modèle hydro » est par défaut à True. Ceci permet d'écrire une matrice donnant à chaque pas de temps les situations culturales des parcelles. On peut le positionner à False si l'objectif ne concerne que l'évaluation de l'autonomie fourragère des exploitations agricoles (avec False l'exécution de Gama_F est raccourcie). Qu'il soit sur True ou False, les surfaces attendues et atteintes des différentes exploitations sont enregistrées dans le fichier :

 $"..\gamaWorkspace\OPALE\includes\generated2\ElevagePolycultureElevage\breeding_agents .csv"$

Pour mettre en forme et analyser ces résultats ouvrir le fichier AttendusAtteints.xlsm se trouvant dans

..\répertoire OPALE.exe\geo_manip\AttendusAtteints.xlsm"

Lancer une macro d'extraction de données avec Ctrl+A. La macro extrait pour les différents systèmes d'exploitation (colonne A), les surfaces attendues, atteintes, globalement ou par type d'activité. PL signifie Pâture Laitières, FPL Fauche Pâture Laitières, F2C_PT Fauche 2 Coupes Prairie Temporaire, F2C_PP Fauche 2 coupes Prairies Permanentes, FP Fauche Pâture, F Fauche 1 coupe, P Pâture, Mais_UF Maïs entrant dans les unités fourragères, SM Surface en maïs non intégré dans les Unités Fourragères et SCP Surfaces de céréales à paille. Des graphiques donnent les correspondances attendus/Atteints, les bissectrices (en rouge) permettant d'évaluer les écarts de prévision.

Ne pas modifier les formules des colonnes A à Z de la feuille.

Le panneau de contrôle permet de fixer la date de début de simulation et de fin de simulation des occupation de sols. On peut aussi fixer la date de début d'enregistrement des matrices destinées au calculs de transfert d'eau, la date de fin étant celle fixée par la fin des simulations. Il faut que les dates de début d'enregistrement transfert et fin d'enregistrement simulation correspondent aux dates de début et de fin des données météo et débits observés (fichier météo et débits désignés dans input.txt, lignes 12 et 13, respectivement).

Enfin, le bouton export_foret_prop enclenche l'enregistrement des proportions d'occupation de sol partageant un même pixel. Il est fixé par défaut à True. Si l'objectif ne concerne que l'évaluation de l'autonomie fourragère des exploitations agricoles, il peut être positionné sur « False », ce qui accélèrera l'exécution du script.

B2-3.1. Gama F CerealesMaraichage

Le panneau de contrôle (fig. 19) présente les boîtes éditables suivantes :

- distance max pour légumes spécialisés. Il s'agit de légumes à forte valeurs ajoutée, généralement situé à faible distance des ateliers de stockage/conditionnement. Ceci ne concerne que les systèmes d'exploitation « Spécialisés Légumes » ;

P	
Gama_F_CerealesMaraichage - C:\Users\admin\gama_workspace\	OPALE\models\gama_F.gaml
File Edit Search Experiment Agents Views Help	
Experiment ready	
Hodel exploitationagri / Experiment Gama_F_CerealesMaraichage	🛛 🖿 Models 🗖 🗖 🗖
	€ 🕀
Concept	0.0
General	
Distance max pour legume spécialisé	500.0
Mono-cultures interdites	[['Ble','Ble']]
Legume spécialisé de proximité	['Betterave', 'Oignon', 'Epinard', 'Salade']
Cultures non prioritaires	L'Chaul 'Deireaul 'Demme de Terre' 'Ble' 'Chau fl
Cultures non prioritaires	[Chou, Poireau, Pomme de lerre, bie, Chou-lik
Cultures pouvant etre binées	['Mais','Betterave','Chou','Poireau']
Enregistrement des donnees pour le modèle hydro	True
Date de début de la simulation	vendredi 1 janvier 2016
Date de fin de la simulation	samedi 31 décembre 2016 , 00:00:00 ↓
Date de début de l'enregistrement	vendredi 1 janvier 2016
export_foret_prop	True
🔎 Interactive console 🔍 Console 🛛	
Requis: Clic run (triangle vert)	^

Fig. 19. GamaF-CerealesMaraîchage. Panneau de contrôle.

- monocultures interdites : pour modifier la liste, passer positionner le pointeur de la souris sur la liste, icône crayon ouvrant une boîte de dialogue représentée fig. 20. Respecter guillemets

et crochets pour la typographie des listes gama : par exemple si on veut ajouter la séquence à interdire ['Chou', 'Chou'], la liste des interdits sera alors : [['Ble','Ble'], ['Chou', 'Chou']] (fig. 20).

cialisé	500.0				×
erdites	[['Ble',	Modify the list	'sequer	nces_inte	rdites'
ximité	['Bette	['Chou','Cho	Add		
ritaires	['Chou	[bie, bie]		Up	, -fle
binées	['Mais			Dov	vn
hydro	True			Rem	ove
ulation	vendre				•
ulation	same	ОК		Cance	 ▼
ement	vendre	di 1 ianvier	2016		0:00:00

Fig. 20. Modification de liste

-légumes spécialisés de proximité : ce sont les cultures qui sont placées près des ateliers de stockage/conditionnement, à la distance donnée par box « distance max pour légumes spécialisés) ;

-cultures non prioritaires : distinguer dans cette liste les cultures dont l'affectation spatiale sera attribuée après que toutes les autres cultures de l'exploitation aient été positionnées.

Les boutons enregistrement ; Dates et export_foret ont les même fonctions que pour les expoitations ElevagePolycultureElevage.

L'éxécution de Gama_F prends quelques minutes. A sa fin le message G=>H Requis invite à exécuter le programme correspondant sur l'interface OPALE.

B2-4. G=>H

Lorsque G=>H est sélectionné, seuls les boutons Traitements Topo et la listbox « systèmes » sont disponibles.

Traitement topo demande un certain temps d'éxécution (fig. 21). Ce programme traite le modèle numérique de terrain et effectue une classification des pixels de façon à ce que les bilans de chaque cellule du domaine de calcul puissent intégrer les flux amont. Une fois l'opération effectuée, le résultats donnant les cascades de calcul est enregistré dans hydline workspace (fichier topo.mat). Si H=>G doit être relancé à la suite de simulations portant sur des changements de systèmes d'exploitation –climat de territoires Elevage Polyculture Elevage (cf plus loin le § Climat Systèmes Pratiques), il y aura intérêt à sélectionner la case

traitement topo non. Dans le cas d'une première exécution H=>H, traitement topo oui doit impérativement être exécuté.

Figure 21. Traitement topo en cours d'exécution. Deux barres de progression successives mesurent le degré d'avancement du programme.

G=>H Calcule aussi la distribution des différents systèmes d'exploitation. Ils sont enregistrés dans le panneau Système agricoles => Paysage (fig. 22a et b), apparaissant en grisé et accessibles dans les étapes suivantes du workflow (cf § Climat Systèmes Pratiques).

Fig. 22a. Proportion de différents types de cultures (Leg. Spé : légumes spécialisés ; Lég p.c. : légume de plein champ) dans les divers types de systèmes d'exploitations (Spécialisé Légumes frais, Mixte et Cerealier) des territoires Céréales Maraichage).

Simul	ations	
Systeme	Proportion (
Lait herbe enrubannage	70	1
Lait foin traditionnel	11	
Lait cereales enrubannage	0	
Lait cereales intensif	0	1

Fig. 22b. Proportion des différents systèmes d'exploitations des territoires Elevage Polyculture Elevage.

Une fois le programme terminé . Une boîte de dialogue demande un nom pour enregistrer les différentes matrices nécessaires aux calculs hydriques. Il faut conserver le suffixe .mat (figure 23).

Save Workspace Variat	oles	×
$\leftarrow \rightarrow \land \uparrow$	\ll hydline \rightarrow workspace \checkmark \overline{C}	Rechercher dans : workspace 🛛 🔎
Organiser 🔻 No	ouveau dossier	≣≡ ▾ (?)
📌 Accès rapide	^ Nom	Modifié le Type ^
	gui	09/12/2019 22:58 Dossie
- US (C:)	Temp	02/01/2020 18:21 Dossie
E Bureau	Trajectories	06/12/2019 12:16 Dossie
🔤 admin	🖈 🛅 data14.mat	26/12/2019 00:03 MATL/
OneDrive	🛅 data14_miribel.mat	02/01/2020 16:40 MATL4
_	🛍 data14_ooo.mat	19/12/2019 22:04 MATL/
Ce PC	🛅 data14_reconfiguré.mat	19/12/2019 17:33 MATL/
📃 Bureau	v <	>
Nom du fichier :	data14.mat	~
Type :	MAT-files (*.mat)	~
∧ Masquer les dossi	ers	Enregistrer Annuler

Fig. 23. Boîte de dialogue pour l'enregistrement des matrices .mat.

Ces matrices correspondent à un catalogue incluant les cascades de calcul topographique, les occupations de sol et les différentes successions de situations culturales au cours du calendrier agricole, les tables relatives aux données météo, de débit ainsi que les chemins pour la gestion des espaces de travail GamAWorkspace et Hydline Workspace.

Les étapes suivantes du traitement OPALE demande l'emplacement de ce catalogue. Ce catalogue sera alors complété par de nouvelles matrices associées à cette succession de calculs successifs. Le nom de ce catalogue évoluera pour une bonne mémorisation des traitements effectués.

Annexe A

Descriptifs des fichiers référencés dans « input.txt »

Les lignes suivantes doivent être référencées dans « input.txt » (cf fig. 10).

Ligne 1 : chemin donnant le répertoire des commandes Java Gama. IL s'agit du répertoire qui a été crée après décompactage du répertoire GAMA_1.8_Windows_with_JDK.zip (cf § 1. Installation et configuration de Gama).

Ligne 2 : chemin donnant le Gama Workspace. (cf § 1. Installation et configuration de Gama).

Les lignes suivantes donnent les chemins d'accès de données territoriales géo référencées :

Ligne 3 : emplacement du <u>répertoire</u> où sont stockées les dalles du modèle numérique de terrain (MNT) , au format raster *.asc. Ces dalles peuvent être téléchargées depuis le site de l'IGN : <u>http://professionnels.ign.fr/bdalti</u>. Choisir un modèle numérique de terrain de 25m.

Ligne 4 : emplacement du <u>fichier</u> donnant les surfaces boisées (format vectoriel shape). Elles peuvent être obtenues sur le site de l'ign : <u>http://professionnel.ign.fr/bdforet</u>

Ligne 5 : emplacement du <u>fichier</u> donnant les données RPG (format vectoriel shape). Les données peuvent être livrées par département ou sur une région entière (selon la provenance), notamment pour la région Rhône-Alpes via son portail sur l'information géographique *Datara* (<u>http://www.datara.gouv.fr</u>). Télécharger les données shapefile (.shp) Il faut sélectionner toutes les exploitations qui ont une parcelle dans le bassin étudié. La table d'attributs des parcelles doit obligatoirement comporter les champs suivants :

« Id_exploit » : l'identifiant de l'exploitation ;
« HYDROM » : une note portant sur l'hydromorphie de la parcelle, sur une échelle de 1 (parcelle saine), 2 (parcelle fraîche) et 3 (excès d'eau).

« PENTE » : une note donnant la classe de pente de la parcelle, avec 0 (pente=0 à 5%), 1 (5 à 15%), 2 (15 à 30%) et 3 (pente supérieure à 30%).

Dans le cas des exploitations céréales-maraichage, la table d'attribut doit inclure un champ « Syst_cultu » donnant le système de culture (respecter cette dénomination). Les catégories possibles sont (pas d'accents, respecter les majuscules/minuscules):

« Specialise legumes »

« Mixte »

« Systeme cerealier»

Sous Qgis, la table attributaire apparaît donc comme ci-dessous :

Contactez les auteurs pour adapter les catégories à votre cas de figure.

Ligne 6 : ne pas renseigner cette ligne pour les systèmes céréales-maraîchage. Dans le cas des systèmes élevage ou polyculture élevage, renseigner le chemin donnant l'accès à un fichier localisant les sièges d'exploitation, au format vectoriel shape, construit à dire d'expert ou lors d'enquêtes.

Dans le cas des exploitation élevage ou polyculture élevage, la table d'attribut doit comporter les champs :

« Id_exploit » : identifiant exploitation ;

et

« TYP_SYST » donnant le système d'exploitation (références Institut d'élevage).

Les catégories suivantes sont possibles (respectez les orthographes):

- « Lait herbe enrubannage »
- « 'Lait foin traditionnel »
- « Lait cereales enrubannage »
- « Lait cereales intensif »
- « Viande bovine naisseur herbager bio »
- « Viande bovine naisseur herbager avec enrubannage »
- « Lait cereales foin ventilé (Avant-pays Savoyard) »
- « Lait cereales foin ventilé (sans maïs) »

(il est possible de modifier les coefficients fourragers qui s'y rattachent, figurant dans le dossier : "..\hydline\includes\breeding_farm_types" où « ..\ » est le répertoire dans lequel a été décompacté OPALE.zip, cf § 2. Contactez les auteurs dans cet objectif).

Ligne 7 : emplacement du <u>fichier</u> donnant les données routes (format vectoriel shape). Il peut être téléchargé ici :

Ligne 8 : emplacement du <u>fichier</u> donnant les données portant sur l'extension du bassin versant (format vectoriel shape).

Il faut délimiter le bassin versant avec des outils d'analyse du modèle numérique de terrain. Une alternative est d'utiliser un code pyhton développé dans le cadre du programme TIP TOP. Suivez la démarche ci-dessous. le programme « delim.py » se trouve dans « ../OPALE/geo_manip/delim.py » :

a) outils informatiques

- Qgis Implanter QGIS-OSGeo4W-2.14.20-1-Setup-x86.exe ici : http://download.osgeo.org/qgis/windows/

b) données

Télécharger sur le site de l'IGN le modèle numérique de terrain (25m). Format d'importation asc. Ici: <u>http://professionnels.ign.fr/bdalti</u>

et le réseau hydrographique. Ici : http://professionnels.ign.fr/bdcarto

c) Mode opératoire

1) Créer un dossier 'WorkDir' noter son chemin d'accès

- 2) Lancer Qgis
- 3) Ouvrir la console python (Menu Extension/Console Python).

Ouvrir l'éditeur (Dans la console Python cliquer sur l'icône Afficher l'éditeur).

-20-tisen	
r Vue Couche Préférences Extension Vecteur Raster Base de données Internet Traitement Aide	
÷ + + + + + + + + + + + + + + + + + + +	• • ∞ # • 🖬 🍢 @ @ • ∞ • •
Couches 🖉 X Console P	ythen
*. 🝸 🖏 - 🕷 🕼 🖌 💊 😋 🎯	
1 Console pation 2 Utilisez Afficher fédteur 3	<pre>r help(iface) pour plus d'informations</pre>

Ouvrir delim.py (Dans l'éditeur cliquer sur l'icône Open Script)

~ ~	r	/** /* /** /** /** /**	SINC NE NE N			– 1
X 10000				Console Pyth	ion recordences not	
- 5	6	👶 😰 🐳 🥝	🕋 🖹 🗿	Þ 🔍 🎽	: 🖹 🔒 # #	
	1 Con 2 Ut te p(3	nsole Python ilisez iface pour accéder à l'in rface de l'API QGIS ou tapez hel iface) pour plus d'informations	Ouvrir le script			
ureau →	pytho	n-tiptop > dont_touch				
	* ^	Nom	Modifié le	Туре	Taille	
	*	/// delim.py	15/09/2018 18:07	Fichier PY	8 Ko	
	*	TIPTOP-Class-Parcell.py	20/08/2018 17:56	Fichier PY	34 Ko	
	*	TIPTOP-delimitation-BV_GRASS.py	20/08/2018 16:53	Fichier PY	5 Ko	

Lancer delim.py (dans l'éditeur cliquer sur l'icône Exécuter le script

3	M		🛝 🏤 🐜 🗞 🗞 拱 🍗 🎆 🍢 🔍 🧟 - 🖾 - 🔹 📝
			Console Python
		🖴 🖹	😭 🔛 🔍 🛰 🖹 🙆 # # 🐮
		0	Sans titre 0 Ketouter le script
l'int	IГ	1	<u>*************************************</u>
help(2	
lons		3	#**************************************
		4	#·····
	1.1	5	#······DELIMITATION·DU·BASSIN·VERSANT·····
	1.1.1	6	#······TIPTOP-delim.py
	1.1.1	7	#**************************************
	8	8	#Author
	1.1	9	#·····Dominique Trevisan
		10	#······INRA·UMR·Carrtel
	1.1.1	11	#······dominique.trevisan@inra.fr
	1	12	#15.sep.2018
		13	
		14	

Sélectionnez le dossier contenant les dalles du MNT (fichiers *.asc)

Selectionnez Dossier MNT $\leftarrow \rightarrow \checkmark \uparrow \square \rightarrow Ce PC \rightarrow B$	ureau > Donne	es_Aiguebelette > hydimp_aig >				
)rganiser 👻 Nouveau dossier						
🕂 Téléchargements	* ^	Nom	Modifié le	Туре	Taille	
Documents	*	BD_Ortho	31/05/2018 18:34	Dossier de fichiers		
📰 Images	*	BD_topo_bati	31/05/2018 18:36	Dossier de fichiers		
🔒 admin	*	BDALTI	15/09/2018 18:00	Dossier de fichiers		
hydimp_aig	*	BDFORET_2-0	31/05/2018 18:34	Dossier de fichiers		
copieggsworkdir	*	Corine_land_cover	25/07/2018 12:10	Dossier de fichiers		

Sélectionnez le dossier WorkDir où seront stockés les résultats

🚀 Selectionnez Dossier resultats											
$\leftarrow \rightarrow \checkmark \uparrow$. Surger \land Donnees_Aiguebelette \diamond hydimp_aig $\checkmark \heartsuit$											
Organiser 🔻 Nouveau dossier											
É 🕂 Téléchargements	* ^	Nom	Modifié le	Туре	Taille						
Documents	*	BD_Ortho	31/05/2018 18:34	Dossier de fichiers							
📄 Images	*	BD_topo_bati	31/05/2018 18:36	Dossier de fichiers							
🔒 admin	*	BDALTI	15/09/2018 18:00	Dossier de fichiers							
hydimp_aig	*	BDFORET_2-0	31/05/2018 18:34	Dossier de fichiers							
copieggsworkdir	*	Corine_land_cover	25/07/2018 12:10	Dossier de fichiers							
5 OS (C;)		courbes_niveaux	31/05/2018 18:36	Dossier de fichiers							
		cours_deau	14/08/2018 12:44	Dossier de fichiers							
Captures d ecran			25/07/2018 12:09	Dossier de fichiers							
cours_deau		Grassworkdir	15/09/2018 18:18	Dossier de fichiers							
dont_touch		Images_sentinelle	11/09/2018 15:33	Dossier de fichiers		•					

Sélectionnez le shape rivière

Selectionnez shape riviÃ~res								
– 🔿 👻 🕇 🧧 > Ce PC > Bureau > Donnees_Aiguebelette > hydimp_aig > cours_deau								
Organiser 🔻 Nouveau dossier								
🖊 Téléchargements	* ^	Nom	Modifié le	Туре	Taille			
Documents	1	Cours_eau_AigueB.shp	14/08/2018 12:44	Fichier SHP	86 Ko			
📰 Images	*							
📙 admin	*							
🔒 hydimp_aig	*							

A l'invite entrez les coordonnées de l'exutoire (RGF_93 /Lambert 93, EPSG 2154 –standard IGN)

La table d'attribut doit comporter un champ aire « aream2 » (m²). Utilisez les outils Qgis pour renseigner ce champ.

Ligne 9 : emplacement du fichier donnant les données routes (format vectoriel shape)

Ligne 10 : emplacement du <u>fichier</u> donnant les données rivières (format vectoriel shape) On peut le télécharger ici : <u>http://professionnels.ign.fr/bdcarto</u>

Ligne 11 : emplacement du <u>fichier</u> donnant les données sols (format vectoriel shape). Il s'agit d'une carte relative aux unités de sol.

Pour Rhône alpes : https://aura.chambres-agriculture.fr/agro-environnement/referentiel-regional-pedologique/

Ligne 12 : emplacement du fichier renseignant les données météo.

Elles peuvent être acquises auprès de météo-France. Il Faut constituer un fichier sous éditeur de texte avec les colonnes suivantes ;

DATE (YYYYMMDD), Pluie Journalière (mm), ETP journalière(mm), Température minimale(°C), Température maximale (°C). Exemple :

20160101	6.20	0.40	2.30	-1.50
20160102	7.70	0.10	5.90	-0.70
20160103	10.50	0.50	4.60	-0.30
20160104	3.50	0.60	6.00	-0.20
20160105	0.10	0.80	6.00	0.10

Ligne 13 : emplacement du fichier donnant les débits relevés à l'exutoire du bassin versant. Il donne les débits observés à l'exutoire du bassin versant (en m3/seconde). On les obtiens via la banque hydro. Ici : <u>http://www.hydro.eaufrance.fr/</u>

Ligne 14 : emplacement du fichier donnant les caractéristiques des unités de sols Ce fichier contient les informations suivantes :

Colonne 1 : identifiant de l'unité ;

- Colonne 2 : Profondeur du sol (cm)
- Colonne 3 : taux de cailloux (%)
- Colonne 4 : teneur en argile (%)
- Colonne 5 : teneur en sables (%).

Exemple :

1	80	5	25	30
2	100	40	35	30
3	150	5	35	30
4	80	40	25	70
5	80	20	25	60
6	80	30	25	60

Ligne 15 : Le nom du territoire étudié (optionnel).

🚺 承 Opale	≥ 2019.v1							– 🗆 X
							- 2000-000 - 500	
3				-	S Miller	<i>a.</i>	Optimisation conte	xtuelle
						Statement of the local division of the local	Imper. prof. [0.01 - 1] 0.1	
	TIP	10P Psdr4 - Inra	- Irstea - Region Au	uvergne-Rhone A	lipes - Feader - Pei-A	.gri	Délai Horton [0.01 - 3] 0.5	
		Calculs en cours	s. Patientez.	Exec	Pause Continu	e Stop 🕜	Délai VSA [0.01 - 3] 0.5	t, (obs cal)
							Délai nappe [0.01 - 3] 0.5	obs.cal
	Initialis	ation		Elevage / P	olyculture-Elevale	^	BV non topp (m ²) 2257426	50 (F0 F0)
	Paramétrage mai	nteau neigeux		Céréales /	Maraïchage	¥	Perte BV non topo [0.01 - 3] 05	<u>19</u> [, (F2 F3)
	oui	🗹 non	data14.mat	Traitem	ent topo 🛛 🗹 oui	non		matique
1,								1. V 3A J_1 130
_	Tecretion	Function	£ (m)	Norm of	First-order	^	Del. Nap. V Perte nap. V Pe	rtHorsBV J_n 180
	0	s s	59 312	step	17 8776			
	1	10	59 312	1 4572	17 8776		Systèmes agricoles => Paysage	
	2	15	30 5922	0 36431	58 0202		Simulation	S
	3	20	19 8539	0 69481	6 099			
	4	25	18.8157	0.20045	4,5839		Systeme	Proportion (
1	5	30	18 7818	0 15094	0 98429		Lait herbe enrubannage	0 ^
-	6	35	18,7818	0.52573	0.98429		Lait foin traditionnel	0
1	7	40	18.7786	0.13143	1.2992			
	8	45	18.7714	0.13143	0.47287		Lait cereales enrubannage	0
	9	50	18.7635	0.26286	1.4924		Lait cereales intensif	
	10	55	18.7626	0.52573	2.3915			
	11	60	18.7568	0.13143	0.42055		Scénario 🗹 actuel	sec généralisé
	12	65	18.7504	0.26286	0.8997		Climatique printemps sec	automne sec
	13	70	18.7466	0.26286	0.76645			
	14	75	18.7458	0.26286	1.0787		Grandes cultures	% non labour
	15	80	18.7458	0.065716	1.0787		0] % binage
	16	85	18.7455	0.016429	0.1578			
	17	90	18.7448	0.016429	0.19684		Nouvelles Oui	BF Feuillus
	18	95	18.7443	0.016429	0.1334		Infrastructures 🗸 Non	Résineux
	19	100	18.7432	0.032858	0.11752			
	20	105	18.7418	0.032858	0.14805			
	21	110	18.7378	0.065716	1.036		Paysage => Agro-Ressources	
	22	115	18.7364	0.13143	0.30407	¥	Transfer	rt
							N P Mic MS	J_ex 0